
Python
Methodologies for Data Science

Lars Sorensen - 16:137:603
Fall 2015 - biglars@cs.rutgers.edu

Python Methodologies for Data Sciences

Introduction
Hello World!
Variables - Assignment - Simple Arithmetic
A way to consider simple data
Keywords
Input from a user
Booleans & Conditionals
Boolean Algebra
Conditional constructs/control statements (if-then-else)

Python Methodologies for Data Sciences

Introduction

Welcome to PMDS. We’re going to start slowly but surely
and get some of the basics under your belts before we move
on to some of the more challenging aspects of computer
programming.

Right now I want to make sure that you’re using Python
3.4. I will be using IDLE in the slides and YouTube videos
as well. Python can be a pain at first because you’ll need to
have the version you want (3.4 in our case), and it should be
for the correct “architecture” for your PC/laptop: either 32-
or 64-bit. At the python.org download page you should be
able to find an executable that will allow you to load Python
3.4 and IDLE on your system. You can get Python by
using the URLs below. Also check out Appendix B of Z
(your textbook) on page 479.

When Python is loaded and IDLE is started, you will see a
window like the one above. At first we will use Python in
interactive mode, but we will quickly begin saving our work
in files. As the course progresses, you’ll see that a single
program often uses multiple files. All will be revealed in
time, though; for now, just make sure Python 3.4 is running
on your system.

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download

Python Methodologies for Data Sciences

Introduction

Okay, assuming all is up and running. If this is
not the case, then make sure to visit Eric or
myself at the CAVE (HILL 252) so we can see
what’s going on. Don’t worry if you didn’t run
through all the examples and the chaos program
from Z chapter one; we’ll go through all of that
here.

Python lets you use the interactive shell window
to just type commands into. This is great when
you first begin to tinker with Python but you will
quickly discover that you’ll want to start
combining and saving your code, so we’re going
to do all of our work with “programs” that we
save in files with the “.py” suffix.

The interactive window is still useful, though. That’s where your
program’s output will go, and we will see how it’s useful for
debugging our programs as well.

Play around with the interactive Python by doing some of the exercises
from pg. 23 ex. 1 of Z. You don’t have to use the same numbers as he
does; play around and do your own thing for while.

Python Methodologies for Data Sciences

Introduction

In IDLE, click on File and
then click on New Window.

A window will open up next
to the Python interactive
window that says Untitled on
the top.

This is where we are going
to type our first program.
Whenever you learn a new
programming language the
first program you write is
one that prints “Hello
World” to the screen. We
are not messing with
tradition here, so off we
go…

Python Methodologies for Data Sciences

Hello World
In this new window type what
you see here (with your name,
of course), click File, Save, and
save the file in a place where
you can keep all your PMDS
programs (I keep mine in a
google drive so I can share
them with you later) and call
the program hello.py. The “.
py” suffix will tell python and
your operating system that this
is a python program.

Congratulations. You’re a
Python programmer now.

Python Methodologies for Data Sciences

Hello World
Now the only thing left to do
is run our program. It’s
easy. Just click on the Run
option and click Run Module
(we’ll learn about why they
call it a module later).
Viola! You can see your
output in the interactive
Python window.

Now, whenever you create a
program, a day or two later,
you can load that same
program and run it again
without having to retype
anything in an interactive
python window.

Python Methodologies for Data Sciences

Comments

A quick word on comments.

First, as you can see, we create a
comment by typing a number sign and
then whatever is after that will not be
considered by the python interpreter.

Comments are EXTREMELY
important. Code readability is a key
facet of programming. All good
programs are well commented and
explained as they proceed.

Python Methodologies for Data Sciences

Comments

Another way to create comments is to
use three quotes. Once you type the
three quotes you can type for many
multiple lines and the text will be
ignored by the Python interpreter.. To
end the comment you merely place
another three quotes and you’re back
in business.

Notice that the quotes appear in the
first column. Come to think about it,
the commands all start there too.
You’ll notice that the comments inside
the quotes don’t though, all the space
between the quotes is ignored.

Python Methodologies for Data Sciences

Whitespace

Unlike most other computer languages, Python cares
about “whitespace.” When we look at code blocks
we’ll see how Python uses whitespace to “delimit”
lines of code that belong together. Other languages
use things like braces {} to do this. In Python, to
start a new block we just indent by four spaces and
every line that is indented by four spaces that
follows is part of the block. Don’t let this be a
hangup: We’ll see more of it later, I just want you to
be aware of it because it creates infuriating errors for
beginning programmers who accidentally start
typing in column 2.

Some coders complain about Python’s note of
whitespace (including the cartoon dude on the
SAKAI site) but it’s silly. Programmers aren’t
Jackson Pollack, it’s more important that code be

readable than for programmers to be able to throw code all around
the editor. Once you get going you’ll see that it’s not a hassle.
Still, be aware, because it will make you nuts when it stops you
from getting your program working.

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

Okay, time to get some work done. Let’s do some addition. In
order to do this I will need to use a variable. Variables are easy,
they are just data placeholders. Think of them like a named
cubbyhole where you keep things. You can only keep one thing
in there at a time, but you can refer to whatever is in there by the
name of the cubbyhole.

When you name variables you NEED to start with a letter or an
underscore (just one underscore, not two, we’ll see why later) and
after that you can use letters, numbers or underscores. Avoid
symbols and punctuation, it’ll keep you out of trouble. Now, you
SHOULD make your variable names readable (big deal when it
comes to working with others) and descriptive. I can assign the
value 34 to the variable “a”, but it is more understandable if the
variable is named “sum” or “balance”.

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

You can see that case matters as well. I assigned
the value 3 to the variable NOOB and I assigned 7
to the variable noob, the same word but in
lowercase. When I print, I print the uppercase
version so my output shows me a 7. In Python,
case matters so always keep that in mind if your
variables do not print what you think they should
be.

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

Look at the code to the right carefully. There’s a lot to
unpack here. First, we’ll see that we have two variables
with descriptive names. Old Microsoft programmers
used to use a system called Hungarian Notation to name
their variables (and functions, we’ll get to that later). In
their system the first variable would be iFirstNumber and
the second would be iSecondNumber.

Now we do our first assignment. We perform an
arithmetic operation on our variables and place the
resulting value in another variable. The first operation
we perform is addition, so we call the variable sum and
store the value of the addition operation there.

 https://en.wikipedia.org/wiki/Hungarian_notation - Check it out...

https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Hungarian_notation

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

 In the last line of the program we print all the values out.
As you can see, sum is 24 and is correct. diff and
product are also correct and pretty self explanatory. The
multiplication symbol is an asterisk, it’s above your 8 on
your keyboard. So far so good...

Now we get to our first “Pythonic” bit of explanation.
We have two kinds of division there. One operator has
two slashes, not just one. A quick look at the results
show that one gave only the whole number answer and
the other gave the full decimal solution. We’ll be
explaining this in the next section, but suffice it to say for
now that we have two different ways to handle whole
numbers and decimals so Python provides two kinds of
division.

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

 Two last points here. As you can see we do
exponentiation with two multiplication symbols. To
raise something to a power we put in two asterisks and
then the power to raise the operand to, in this case 2.
Seven squared is forty-nine and that’s the answer printed
so we’re in good shape.

The last operation before the print statement may be new
to you. It’s called “modulo” or “modulus.” It just gives
the remainder of a division operation. It’s incredibly
useful as we will see so don’t forget about it. It’s just a
percentage sign, the one right above the 5 on the
keyboard.

https://en.wikipedia.org/wiki/Modulo_operation Check it out

https://en.wikipedia.org/wiki/Modulo_operation
https://en.wikipedia.org/wiki/Modulo_operation

Python Methodologies for Data Sciences

Variables - Assignment - Simple
Arithmetic

 One last thing. Type this in and play around with it. Just
get a new file, name it variables.py and type it in real quick.
Then save it and run it. Change the values of the number
variables. See what happens. Make the first_number a
zero. Yikes, that opens a ball of wax. Try really big
numbers; I mean stupid big numbers. We’re going to
come back to it later so take the time to type it in and watch
it run on a few different number combinations.

● I also wanted to note the “/” symbol in the print
function. I put it there to extend the line and make
the program look neat. All you do is type it and hit
enter and IDLE will put you in the properly
indented spot to keep typing. Try it.

Python Methodologies for Data Sciences

Data - Numbers & Words

Time to review some data basics. As we first
begin to explore Python we’re only going to care
about four types of data. Three of them are merely
numbers and words. (the fourth is Booleans, we
get to them later in these slides)

In Python (and most programming languages) we
call a discrete whole number like 1, 78, or -56 an
Integer. My broken failing memory tells me that
it’s Latin for “untouched” or something and over
the years has morphed into the term for whole
numbers. Python will abbreviate it and refer to it
as “int” in functions and when it describes the data
type. Wait, data type? Keep reading...

Python Methodologies for Data Sciences

Data - Numbers & Words

A data type is just the kind of data that a variable will
hold. I can give “my_integer” a 7 and Python will say
“the variable my_integer now holds integers”. This is
called “dynamic typing”. (It’s also one of the things
the cartoon guy makes fun of on the SAKAI site). In
other languages we need to decide what we want our
variables to be, forever, ahead of time and “declare”
them as different types. In Python, we don’t bother.
This can lead to some issues down the line, but for the
most part if you are a good programmer (which we all
are) then dynamic typing will not be biting us in the
arse.

Python Methodologies for Data Sciences

Data - Numbers & Words
Now, we have two more data types to talk about. The
second variable you see me declare is a floating point
number or a “float”. We can go bananas and talk about
significands and radix points, but for now we’ll just
think of them as “the ones with decimals.” Floats are
different from Integers in that they can be used for
different kinds of tasks.

The natural question is “why bother?”. Why can’t we
just have floats and 1 could be represented as 1.0 and
we’re done with it? You know what, good point. What
you need to understand it is a Computer Science history
lesson about how we store numbers. Suffice it to say it’s
much easier to store and work with Integers, if you can.
In the dinosaur days (someday I’ll show you pictures)
memory and CPU time were PRECIOUS (said like I’m
Gollum).

Python Methodologies for Data Sciences

Data - Numbers & Words

The third data type is strings (str). A string is just a
word. We call them strings because we (computer
programmers and computer science types) used to
just consider single letters or characters. We called
them “chars” and a word was just a “string” of chars.

We will dive deeply into strings in Unit 2, so for right
now we’re just going to think of these variables as the
ones that hold words and not numbers.

We can also see our first utility function, the “type”
function. As you can see in the print function we call
the type function with our variables as input and it
returns the type of the variable. In a language like
Python where we have dynamic typing this will
become a very useful thing to be able to do down the
road.

Python Methodologies for Data Sciences

Data - Numbers & Words

These simple data types are what we are going to work
with as we learn Python in the early stages, but I don’t
want you to think that this is the limit to what we
consider data. Data is anything we can use to describe
a change to the state of a situation. Later, we will
consider mouse clicks, mouse movement, keyboard
input, colors, etc. as data. Data is all around us and it’s
up to the programmer to be creative and to represent it
using our programming languages.

For now we care about numbers (integers and floats),
words (strings) and soon we’ll learn about Booleans
(they’re easy), but don’t think this in anyway limits
how we think about data. We just have to learn to
walk before we run.

Python Methodologies for Data Sciences

Help and Keywords

A quick detour. If you are
in IDLE type help() and
hit enter. You see the
Python help utility.

This system will become a
valuable resource for you.
I mention it here because I
used it to print the
keywords we’re going to
look at next, but I wanted
you to know that the
system is there for you
anytime you need it.

Python Methodologies for Data Sciences

Help and Keywords

This is a list of the Python
“keywords”. They are special words
that you cannot use when you create a
variable (or a programmer defined
function, we’ll see that later) because
they have a special meaning to the
Python interpreter.

When you use them in IDLE you will
see that they are displayed with a
different color.

At the end of this course you will
know what all thirty-three of them do.

Python Methodologies for Data Sciences

Help and Keywords

You don’t have to memorize them or
any such thing (I don’t think I could
name them all off the top of my head
if asked), just be aware of them and
know that you can go to the help
system and look at them any time you
need to.

I’ve always found it cool that an
entire computer language as rich and
useful as Python only has 33
keywords (it was less with “C,”
Python’s grandfather).

Python Methodologies for Data Sciences

Input from the user

Okay, time to do something next level. Remember the
variable program where we played around with different
arithmetic operations? If you didn’t type it in and play
around with it, do so now, there’s a method to the
madness.

Now, this is not a very useful program. You load it, run
it, and it tells you a bunch of things about 7 and 17. Gets
boring pretty quick, yeah? When numbers are assigned to
variables explicitly inside a program we say that the
numbers are “hard coded”. For some variables this is fine
(sometimes preferred), but for our arithmetic tests it gets
tedious to keep editing the program to change numbers.

What if we could change this program so that when you
ran it the program asks for the numbers to use in the
operations?

Python Methodologies for Data Sciences

Input from the user

Enter the input function. By using “input()” we can ask the
user (the person running the program) for the data as we
run the program.

In it, we create a prompt that the user will see and the
number that is typed in will be placed in the variable it is
assigned to.

As you can see below I entered the 7 and 17 as the program
ran (you don’t see 7 or 17 in the code anymore, right?) and
we still got our arithmetic tests.

Python Methodologies for Data Sciences

Input from the user

Now look closely at the first two lines after the comments.
We assign our variables the results of two functions, one
run inside of the other. I will explain.

If we merely said,

first_number = input(“Enter the First Number”)

this would be fine for printing the variable but we could not
use it in arithmetic. Why? Because the results of input
functions are strings. Remember data types? We can only
do math on integers and floats. When we try to do math on
words (strings) the code will break...

Python Methodologies for Data Sciences

Input from the user

In this example I run the input statement alone, see? (there
is no “int(“ like in the previous slide) I can print it OK
(line 13), but when I try to use the variables in arithmetic
operations Python responds with a big old error message
(we will learn how to read these so no worries now).

What I need to do is find a way to tell Python to take the
string I give it (“7” and “17”) and treat them like numbers.

Python Methodologies for Data Sciences

Input from the user

I put the “int(.....)” back now. This is how we tell Python
to treat the strings that input gives it as integers. The “int”
stands for integer and this is the “int” function. In
programming we call this “casting”.

We can cast integers to strings (with the str function),
integers to floats (with float()) and so on and so forth.

NOW we will have integers in our two number variables
and be able to perform arithmetic with them.

Python Methodologies for Data Sciences

Input from the user

Now we have a useful program that can show us the arithmetic
relations between any two numbers and we can choose those numbers
at the time we run the program.

The four “runs” shown here show how our program handles the
different inputs and also shows that even Python has no answer for a
division by zero. (We will learn how to handle these things later
when we discuss “error trapping” and “exception handling”).

Python Methodologies for Data Sciences

Take a Break...
Take a break. We’ve already done quite a bit and you have a bunch
of stuff to absorb. Think about it.

You’ve installed Python and started using the integrated development
environment IDLE to create programs. You did your “Hello World”
program and went off to bigger things.

You’ve written programs that use comments, assigned data to
properly named variables, you’ve performed arithmetic operations on
these variables, you printed them to an output screen, you considered
data types and checked the data types of your variables with the
“type” function, you considered keywords, you altered your program
to collect data from the user and you casted one data type (strings)
into another (integers) for use in your program.

That’s a lot. Congrats. Way to be. You’re a programmer now.
Enjoy it. Take a break and when you come back we’ll finish this unit
with a look at Conditionals, Boolean data types and control
statements.

Python Methodologies for Data Sciences

Booleans and Conditionals
I hope you enjoyed your break. We only have a few more things
to do for this unit. The first thing we’re going to do is introduce
you to the fourth data type we are going to consider in these early
stages. It’s called a “Boolean.” Quite simply, a boolean variable
holds one of two values. It is either True or False. It’s that simple.

 The word Boolean comes from a gentleman named George Bool.
He developed a type of algebra that is based on true and false
values. This algebra was the starting point for much of digital
electronics and also set theory, which is near and dear to the
discrete mathematical hearts of all computer scientists.

 We will look at how we can use conditionals and boolean algebra
operators to create True and False values and then we will learn
how to have our programs perform certain tasks based on what
these values are...

Python Methodologies for Data Sciences

Booleans and Conditionals

To the right you can see the six relational operators that
Python uses to create conditionals.

 Examine the four boolean variables I created and make
sure you understand why they have the values they do.
This should be fairly straight forward but it’s also a new
way of thinking about values and variables so take your
time.

 Something that often trips up new programmers is the
equals conditional operator (==). It’s TWO equal signs
because we use a single equal sign as an assignment
operator in Python (this is how it is in many other
languages as well so burn it into your brain.) If you are
having problems running a program later check to make
sure all your equivalency conditional operators have TWO
equal signs!

Python Methodologies for Data Sciences

Booleans and Conditionals

We can take variables from the user and perform
tests on them. As you can see here I embed the tests
right in the print function. Compare this to the next
slide...

Python Methodologies for Data Sciences

Booleans and Conditionals

Here we take the time to create the boolean
variables and use them in our print statements.
Either method works, but if you think you will use
your value again in your program it’s best to create
a variable. Get a new file, name it bool.py and type
in this program. When you are done run it a few
times with different values.

Python Methodologies for Data Sciences

Booleans and Conditionals
We can also use conditional operators with strings! When we do the
values being tested are being considered “lexicographically,” which is
just a complicated way to say “in alphabetical order.”

Take a look at how the values and program output changed.

You may be saying, “Wait,
Hello is before Howdy
alphabetically, why is the
first value True?”

 Think of the alphabet as a
number line. Now consider
where “He” would be and
where “Ho” would be. “Ho”
is to the right of “He” so the
computer thinks “greater.”

Python Methodologies for Data Sciences

Booleans and Conditionals

Before we move on to boolean algebra, let’s test
some of our new conditional operator knowledge..

Can you determine what the output of this program
would be? If so you’re likely in OK shape. If not, go
back and review that last five slides and give it
another go. Some people find this natural and some
find it weird.

Click forward for the answers...

Python Methodologies for Data Sciences

Booleans and Conditionals

Forgive me for b4, I can’t help myself sometimes.

Keep in mind that the precedence of arithmetic
operators will often play a key role in many
conditional expressions so keep an eye on that.

Now we will move on to Boolean algebra and start
combining and choosing between boolean variables.

Python Methodologies for Data Sciences

Boolean Algebra

The final thing we have to do before jumping into
control structures is to consider boolean algebra
operators.

 There are only three. and, or, and not. They allow us
to create more complex conditionals for when we will
make decisions based on these values.

 For example, let’s say we are game programmers and
we want to print “WINNER!” to the screen when a
player has more than 1000 points and is the top scorer
in the game. Boolean algebra will allow us to test for
both conditions in one line.

First let’s look at how the three operators work.

Python Methodologies for Data Sciences

Boolean Algebra

Simply:

AND : produces a true value when both values on
either side of the operator are true. If either or both of
the values is false then the result of the AND operation
with be false.

True and True = True
True and False = False
False and True = False
False and False = False

The only way to produce a True is if both values are
True.

Python Methodologies for Data Sciences

Boolean Algebra

Still simply:

OR : produces a true value when EITHER or BOTH
values on either side of the operator are true.

True or True = True
True or False = True
False or True = True
False and False = False

The only way to produce a False is if both values are
False. Notice that I only changed the ands to ors in the
code example to the right.

(For you engineering types, don’t worry about XOR for now...)

Python Methodologies for Data Sciences

Boolean Algebra

More than simply:

NOT : produces the opposite of the value it is operating
on.

Not True = False
Not False = True

It’s that simple. As you can see, all of the values in the
program display their opposite after the not operator is
applied.

Python Methodologies for Data Sciences

Boolean Algebra

We can use the “and” to create complex conditionals that lead to one
value, in this case a True if the input is greater than 10 AND less than
30 (but not equal to 30, look at the 5th run...)

Python Methodologies for Data Sciences

Boolean Algebra
Change just the “and” to an “or” and see the difference. There is no
way to get a False value now, the two conditions are not joined, only
one of them need be true.

Python Methodologies for Data Sciences

Boolean Algebra
Hello. Look at the booltest1 condition now. Huh?

Python Methodologies for Data Sciences

Boolean Algebra

With boolean operators, as with arithmetic operators,
there is an order of precedence. It’s easy to remember:

NAO

Not - And - Or

But no one ever remembers it. Because of this
everyone (including Zelle) recommend you put complex
boolean conditionals in parenthesis so you never have to
worry about such things.

 If we did that here.... (that’s a hint to go to the next
slide)

Python Methodologies for Data Sciences

Boolean Algebra

Take the 4 as input and follow NAO
We evaluate the (not (num < 30)) first. That evaluates to (not True) or False.
Now we have ((num >10) or (False and (num==0))
We evaluate the “and” next.
 num==0 evals to False (it’s 4) so we get (False and False). This evals to False.
This leaves us with ((num > 10) or False)
Is num is greater than 10? No, it’s 4, so this is False, leaving us with (False or False).
This evaluates to False. The value of the entire conditional is therefore False.

This is the less confusing way to think about it....

Python Methodologies for Data Sciences

Boolean Algebra

After those last two slide you likely think that boolean algebra is forty miles of bad
road. Do not be concerned.

Part of programming with Python is learning to make code easy and readable for the
next programmer who looks at it. A confusing or confuscated example like the one
we just looked at would never be used in a well written Python program.

That said, sometimes it is convenient to craft complex conditionals in order to save
time and compact your code.

OK. We have comparison conditionals (==, <, >, <=, >=, !=), we understand
Boolean variables (True or False) and we can even create complex conditional
expressions with our command of boolean algebra (Not, And, Or).

Now it’s time to use this ability to start making decisions and executing code based
on decision making and control structures.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

The last thing we are going to look at for Unit one is a “control”
or decision structure. That sounds complicated so forget it. They
are just if-then-else structures and this is how they work.

 The simplest kind, look to the right, just uses the “if.” if the
conditional set up after the if is true we run the block of code that’
s indented four spaces and placed below the if statement. If the
condition is false we do nothing. (You will notice that Python
assumes the word “then.” While this is classically called an if-
then-else structure you never have to type the word “then” in
Python.)

 In the example to the right we take a number from the user. If
that number is greater than 10 (not equal to) we print “This
number is greater than ten!” If not, we do nothing. Note that the
second print line, the one that prints “The End” is back to no
indentation. It will be run no matter what, it is not part of the
indented “block.” Look at the next slide...

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

You can see from the runs below that if num1 is not greater than
10 we merely skip the line that prints “This number... ten!”

 This is the decision structure. You can now examine data and
make decisions on whether to run code or not based on the results
of your conditional statements.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

We can put parenthesis around our conditional if we desire, but
we do not have to. This helps later when we look at complex
conditionals

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

Now we can look at what to do when our conditional is not
true. Our control structure can have a task to perform if the
conditional is true and task to perform if the conditional is
not.

 We use the “else” to note what to do if the condition is not
true or “falls through.” Note the : after the else. This is to
denote that there is a new block.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

You can see from the run below that when the number is
greater than 10 only the “greater” print line is run and when
it is 10 or less the else statement kicks in and prints the “less
than” print line.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

Here we show how code is run in a block and not just a single line.
When the “else” condition is true we run a “block” of code. As many
lines of code that are indented like the others can be run.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)
We have a few more wrinkles to consider. The first is the “elif.” It’s
an if within an if. We could have done it by just using another if
statement, but then it would not be easy to set up our else block.

 When there’s a conditional with three possibilities the if-elif-else is a
perfect way to handle it.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

Look at the second line of the > 10 block. It’s an if statement under
another if. This is called a “nested” if statement and is perfectly
acceptable. In fact, we could put an entirely different if-elif-else structure
here if we desired. Nested control structures are permissible and, frankly,
very useful when you are a computer programmer. It all depends on the
logic you are trying to create in your program.

If you can see what’s going on
here you’re in pretty good shape.
Get a new file, call it ifthen.py and
type this in. Play with a few runs,
change the nested if to another
branch, play around.

Python Methodologies for Data Sciences

Conditional constructs/control statements (if-then-else)

One last thing. Remember, you can have complex conditionals
for your if statements. It all depends on the logic you are trying
to use in your program. If you have something to do ONLY
when a value is between a range this is a good way to go.

Python Methodologies for Data Sciences

A few simple exercises
(These are not your programming assignments, they are practice. Your programming assignments will be in the resource folder and are due on
Spetember 17th. Do not forget them)

1. Write a program that take a number as input and prints out the square and cube of that number.

2. Using Modulo write a program that takes a number as input and prints out whether it divides evenly into 34,550.

3. Write a program that takes a number from the user and prints out whether it is negative or positive.

4. Write a program that takes a number as input. If the number is greater than 100 print its square, if less than
print its cube.

5. Write a program that takes two numbers as input. Using a complex conditional print “Winner!” if both numbers
are greater than 1,000.

